Área Científica Florestal

PTDC/AGR-FOR/4218/2012 Código

Início 2013/7/1

Termo 2015/09/30

Título

Estratégia integrada para o estudo da tolerância ao stress salino em Casualina glauca e sua relação com a fixação simbiótica de azoto

Programa

Medida

FCT

Projetos de I&D em todos os Domínios Científicos

Instituição Líder Instituto de Tecnologia Química e Biológica

Investigador Responsável INIAV

Isabel Maria da Silva Videira e Castro Viana

Orçamento Total 175 512,00€

Orçamento INIAV 7 584,00€

Parceria

ІТОВ	Instituto de Tecnologia Química e Biológica	Nacional
INIAV	Instituto Nacional de Investigação Agrária e Veterinária, I.P.	Nacional
FFCUL	Fundação da Faculdade de Ciências da Universidade de Lisboa	Nacional
IICT	Instituto de Investigação Científica Tropical	Nacional
USto	University of Stockolm	Suécia
MSU	Michigan State University	EUA

Equipa

Isabel Maria da Silva Videira e Castro Viana

Resumo

O processo de desnitrificação resulta num rápido consumo do azoto da biosfera, sendo a sua reposição garantida através da fixação de azoto atmosférico (N2). Existem dois processos que permitem a fixação do N2, a redução química, que comporta elevados custos e tem efeitos negativos para o ambiente, e a fixação biológica, sem encargos de qualquer natureza. Este último está confinado a certos procariotas, que em alguns casos estabelecem endosimbioses com plantas superiores (Pawlowski and Bisseling 1996). Dois grupos de plantas, leguminosas e actinorrízicas, estabelecem simbioses ao nível das raízes com bactérias fixadoras de N2, Rhizobium e Frankia, respectivamente. Enquanto que o rizóbio estabelece simbioses quase exclusivamente com leguminosas (e.g. luzerna, lupinus, ervilheira, soja), a Frankia estabelece simbioses com 8 famílias de plantas, essencialmente árvores e arbustos (e.g. Casuarina, Eleagnus, Datisca, Alnus). Em ambos os casos a bactéria é hospedada dentro de órgãos especiais, os nódulos radiculares, no interior dos quais ocorre a fixação de N2. Ao contrário das leguminosas as plantas actinorrízicas possuem elevada capacidade de adaptação a ambientes extremos tais como, seca, salinidade, metais pesados, pH e solos pobres (Diem & Dommergues 1990). Assim, para além da sua importância económica (madeira e derivados), este tipo de plantas é de extrema relevância ecológica, com vasta aplicação agroflorestal, na recuperação de solos e dunas e na prevenção da desertificação (Kratsch and Graves 2004). Face ao crescente risco de alterações climáticas, o interesse das plantas actinorrrízicas tem vindo a crescer acentuadamentee. A elevada capacidade das plantas actinorrízicas tolerarem condições ambientais extremas é normalmente atribuída à sua capacidade simbiótica com Frankia. Contudo, a investigação neste tópico só agora começa a emergir. Ao nível molecular, o nosso grupo iniciou estudos pioneiros relativos à análise de genes de defesa/stress na planta actinorrízica modelo Casuarina glauca (Fortunato et al 2007, Santos et al 2008, Santos et al 2009). A maior parte dos genes isolados são regulados por stress abiótico e a sua análise functional está em curso. O presente projecto visa complementar e alargar estudos anteriores, contribuindo assim para o progresso na investigação em plantas actinorrízicas, tendo como modelo a avaliação do impacte do stress salino em C. glauca.

Segundo Wang et al (2003), a secura e a salinidade têm vindo a alastrar em muitas regiões do globo, prevendo-se que no ano de 2050 mais de 50% da terra arável seja salina. Deste modo, a tolerância à salinidade tem-se tornado cada vez mais relevante nos sistemas agro-florestais. Para além de ser considerado o modelo de plantas actinorrízicas, a C. glauca é frequentemente encontrada em solos salinos de zonas costeiras e amplamente utilizada para recuperação de solos marginais e prevenção da desertificação. Neste contexto, os objectivos específicos do projecto são: a) avaliação do impacte do stress salino em C. glauca e determinação do grau de tolerância/susceptibilidade; b) determinação do grau de contribuição da bactéria simbótica (Frankia) para a tolerância ao stress; c) determinação dos mecanismos/estratégias básicos utilizados pela plant para fazer face ao stress. Para tal, será seguida uma abordagem multidisciplinar baseada na biologia de sistemas (Fukushima et al 2009). O impacte do stress imposto será avaliado ao nível morfológico, fisiológico e (bio)químico visando a determinação de alterações ao nível da fotossíntese, do sistema antioxidativo e estabilidade membranar, que estão normalmente entre os primeiros "alvos" do stress abiótico. Complementarmente, estudar-se-à o efeito do stress salino na eficiência do uso de água, fixação de N2 e no crescimento da planta. Este conjunto de análises permitirá a definição de pontos chave para uma análise mais alargada ao nível do proteoma da planta, complementar à análise do transcritoma em curso no Institut de Recherche pour le Développement (IRD, Montpellier, França). Desta forma, espera-se poder elucidar os mecanismos mais importantes usados pela planta para fazer face à salinidade e determinar até que ponto a simbiose com Frankia contribui para a tolerância ao stress salino. Este projecto está no seguimento de 2 projectos da FCT (POCTI/BME736191/2000; POCI&PPCDT/AGR/55651/2004) e de 2 projectos bilaterais GRICES IICT/IRD (Proc-616C2 e PESSOA-Proc 441), consolidando uma rede (com mais de 10 anos) de 4 institutos de investigação nacionais (Instituto de Tecnologia Química e Biológica, Instituto de Investigação Científica Tropical, Instituto Nacional de Recursos Biológicos e Faculdade de Ciências da Univ. Lisboa), 2 instituições europeias de referência internacional na área das plantas actinorrízicas (Univ. Estocolmo, Dep. de Botânica, Suécia e IRD, França) e 1 universidade norte americana. O projecto beneficiará do know-how, facilidades e equipamentos disponíveis nas 7 instituições.