

LISBOA

XX XX

CIISA CONGRESS 2022

INNOVATION INANIMAL, AND VETERINARY BIOMEDICAL

LISBON NOV 11 _ 12

🕖 frilabo 🛛 🛛 VECTOR

XOX

SESSION 2 ANIMAL AND FOOD SCIENCE

O 011

Effects Of Sunflower Oil Infusions Of Asparagopsis taxiformis On In Vitro Rumen Methane Production

F. Sena^{1,2}, P.V. Portugal³, M.T. Dentinho^{2,3}; K. Paulos³, C. Costa³, D.M. Soares^{1,2,4}, A. Oliveira⁶, H. Ramos⁶; S.P. Alves^{1,2,5}, R.J.B. Bessa^{1,2,5} and J. Santos-Silva^{2,3,5*}

 ¹ Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477 Lisbon, Portugal;
² CIISA - Centre for Interdisciplinary Research in Animal Health, Av. Universidade Técnica, 1300-477 Lisbon, Portugal;
³ National Institute for Agricultural and Veterinary Research (INIAV), Fonte Boa, 2005-048 Vale de Santarém, Portugal;
⁴ Terraprima Ambiental Services, Centro de Negócios do Porto Alto, Fração S, Av. Nações Unidas, nº 97, 2135-199 Samora Correia, Portugal;

⁵ Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS);

⁶ seaExpert, Travessa do Farrobim, 15 9900 – 361 Horta, Portugal

Introduction: Supplementation with the red macroalga *Asparagopsis taxiformis (AT)* of ruminant diets is a promising strategy to reduce methane (CH₄) emissions from rumen. This effect is attributed to halogenated compounds, particularly bromoform (CHBr₃), a volatile compound. Immersion in *AT* biomass oil is effective in stabilising CHBr₃. The main objective of this study was to verify the effectiveness of sunflower oil naturally enriched in *AT* halogenated compounds in reducing CH₄ emissions.

Material & Methods: Six levels of $CHBr_3$ (0, 25, 50, 75, 100 and 150 $\lceil g CHBr_3/g \text{ feed dry matter (DM)} \rangle$, included in 60 $\lceil L$ of Bromoil were evaluated *in vitro*, using an ANKOM^{RF} gas production system, through 5 runs, with two replicates in each run. To perform the 48-hour incubations, rumen inocula were collected after the slaughter of young-bulls reared on the same farm and 1 g DM of a Total Mixed Ration was used as the feed sample. Total gas and CH₄ production, organic matter (OM) degradability and volatile fatty acids (VFA) proportion were determined.

Results: Total gas production was not affected by treatments but CH_4 emissions decreased in 50 % and 86 % with the treatments 100 and 150, respectively. The degradability of OM and Total VFA were not affected by treatments but the acetate to propionate ratio was 20 % and 25 % lower for treatments 100 and 150, respectively. Discussion: These results demonstrate that oil immersions of *AT* can be effective in reducing CH_4 emissions and need to be confirmed in *in vivo* trial.

Support/interest disclosure:Work funded by PRR-C05i03-I-000027-LA3.1, GEEBovMit, and by Portuguese Foundation for Science and Technology (FCT) grants UIDB/00276/2020 (CIISA), LA/P/0059/2020(AL4AnimalS) and a PhD studentship to F. Sena (UI/BD/152817/2022).

Keywords: *ASPARAGOPSIS TAXIFORMIS*; OIL; METHANE; *IN VITRO*