

MICROPLASTICS IN THE ENVIRONMENT: A BIG CHALLENGE

Joana Antunes
1 october 2024 ITQB NOVA, Oeiras

PRESENTATION STRUCTURE

Plastic production
Microplastic pollution
Sources of microplastics in the agriculture
Plastic degradation
Microplastics in the environment
Adverses effects of microplastics in agriculture
How can we reduce the impact?

PLASTIC PRODUCTION

Versatile, durable, low cost

9% recycled

12% incinerated

79% ends up in landfills or the environment

11 million tons plastic per year enter in the oceans

MICROPLASTICS

plastic particles with dimensions < 5 mm Synthetic polymers

Primary
Intentionally produced

cosmetics

Secondary Degradation of macroplastics

MICROPLASTIC POLLUTION

E Para

Source: Hofmann et al., 2023

polyethylene or polypropylene

Installation and removal of mulches can **cause tears and**wear, releasing microplastics

After use, many plastic mulches are **left in the field**, where they **continue to degrade**

Nets, tunnels,

The state of the s

Source: Hofmann et al., 2023

Improper disposal or burning can lead to fragmentation, releasing microplastics into the soil and air.

Protect crops, enhance growh extend the growing season

help in controlling environmental conditions and minimizing pest damage

Source: Hofmann et al., 2023

Trays and tree guards

protect young trees from environmental stress, pests and physical damage

irrigation systems

Water reservoirs, tanks, cisterns, storage containers, sprinklers drip irrigation, irrigation pipes facilitate the distribution of water in agricultural fields

Source: Hofmann et al., 2023

polyvinyl chloride polyethylene

Source: Hofmann et al., 2023

polyethylene

avoid the need of storage buildings protect silage from air exposure

intentionally added to the coating to ensure that the nutrients are released more slowly

chlorinated polyethylene

PLASTIC DEGRADATION

MICROPLASTICS IN THE ENVIRONMENT

≠ shapes ≠ interactions

risks to wildlife, particularly through ingestion

develop positive or negative electrical charges

affects how they bind to other materials (other pollutants)

MICROPLASTICS IN THE ENVIRONMENT

≠ shapes ≠ interactions

risks to wildlife, particularly through ingestion

develop positive or negative electrical charges

affects how they bind to other materials (other pollutants)

Toxic carriers

Introduce adsorbed contaminants into food webs and disperse through soils and water systems

MICROPLASTICS IN THE ENVIRONMENT

≠ shapes ≠ interactions

risks to wildlife, particularly through ingestion

develop positive or negative electrical charges

affects how they bind to other materials (other pollutants)

Toxic carriers

Introduce adsorbed contaminants into food webs and disperse through soils and water systems

Bacteria substract

Hydrophobicity changes Emit olfactory signal Enhance bioavailability

MICROPLASTICS IMPACTS IN SOILS

toxicological impacts on soil biota

plays a vital role in soil ecosystems

MICROPLASTICS IMPACTS IN SOILS

toxicological impacts on soil biota

impact on soil physical properties

negative consequences for soil health and agricultural productivity

MICROPLASTICS UPTAKE BY PLANTS

uptake and storage of microplastics

Betula pendula Roth

Austen et al., 2022

Longitudinal cross-section showing polyamide microplastics (5 to 50 μm) inside a birch lateral root in a one-year-old tree after being exposed to contaminated soil for 5 months.

MICROPLASTICS UPTAKE BY PLANTS

A B

Putar et al., 2023

500 μm

Microplastics adhered to roots of *L. minor.* formation of aggregates (A), and presence of biofilm at the plant-microplastic line (B).

500 μm

MICROPLASTICS UPTAKE BY ORGANISMS

MICROPLASTICS IN THE FOOD CHAIN

risks to biodiversity and ecosystem health, as well as potential dangers to human health

EFFECTS ACROSS LEVELS OF BIOLOGICAL ORGANIZATION

MICROPLASTICS CAN BE DEGRADED INTO NANOPLASTICS

HOW CAN WE REDUCE THE IMPACT?

Replacing plastic mulch films with bio-based biodegradable films

Use Plastic-Free fertilizers

Circular Economy

Increase recycling rates

Filter Water Sources

Public awareness and education

Improve waste management practices

Policy and Regulation on plastic use in agriculture

Support Research and Innovation

AGRI-PLAST PROJECT

Testing new alternatives to plastic mulches

T2- Black geotextile

Mapping sources of microplastics in agriculture

Testing biodegradable materials such as paper, pine bark and nature-based biodegradable mulch materials (derived from starch and cellulose)

Monitorize the presence of microplastics in soils, irrigation water and fruits exposed to plastic mulches and their associated additives

Evaluating the soil health biomarkers (nematodes, enzymatic activities))

Evaluating the rootdevelopment of blueberry plants using the mini-rhizotron technique and plant development

THANK YOU!

Contact: joana.antunes@iniav.pt