News on the Fight-2 Project

News nº 6

30th September 2019

Participation of the Fight-two Project in the 1st International Conference of the European College of Veterinary Microbiology (ECVM), Athens 26th & 27th September, 2019

The strategy and objectives of the **FIGHT-2** Project - development of an edible vaccine for the control of the type 2 viral hemorrhagic disease virus (RHDV2) in wild rabbits, funded by the Foundation for Science and Technology (FCT) (PTDC / CVT -CVT / 29062/2017-PT2020) - were presented by Elsa Leclerc Duarte, Assistant Professor in the Department of Veterinary Medicine at the University of Évora, at the 1st International Conference of the European College of Veterinary

Microbiology (ICECVM), which took place in Athens, Greece, on the 26th and 27th of September, 2019.

The **FIGHT-2** Project aims the development of an oral vaccine to control viral hemorrhagic disease, putting into practice one of the 12 measures of an Action Plan for the Control of Viral Hemorrhagic Disease in Wild Rabbits (Order 4757/17 of 31 May, MAFDR).

The panel was entitled "FIGHT-2 strategic framework - Development of an edible vaccine for the control of the type 2 viral hemorrhagic disease virus (RHDV2) in the wild rabbit".

Fight-Two Project - Development of an edible vaccine for the control of viral hemorrhagic disease (RHDV2) in wild rabbits

PTDC/CVT-CVT/29062/2017-PT2020 - Fundação para a Ciência e Tecnologia

News on the Fight-2 Project

Notícia nº 6

30 setembro 2019

Participation of the Fight-two Project in the 1st International Conference of the European College of Veterinary Microbiology (ECVM), Athens 26th & 27th September, 2019

The 1st **ICECVM** organized in collaboration with the Study Group for Veterinary Microbiology (ESGVM, Study Group for Veterinary Microbiology) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID).

Maria José Saavedra, Associate Professor at UTAD and representative of Portugal at ESGVMESCMID (left) with Elsa Duarte, member of the Fight-Two team at the University of Évora (at the board, flanked by two students from the Veterinary Medicine course) at the University of Thessaloniki, Greece, at the 1st International Conference of the European College of Veterinary Microbiology, that took place in Athens, September 26-27, 2019

Essentially, it consisted of a forum dedicated to veterinary microbiology, organized in thematic sessions dedicated to i) Veterinary Bacteriology and Mycology, ii) Veterinary Virology, iii) Microbiological Diagnosis, MALDITOF, Genomics & Metagenomics, and iv) Antimicrobial Resistance, One Health and food microbiology.

Elsa Duarte and Eva Cunha (PhD student at CIISA-FMV) at the 1st International Conference of the European College of Veterinary Microbiology, Athens 26 to 27 September 2019.

Fight-Two Project - Development of an edible vaccine for the control of viral hemorrhagic disease (RHDV2) in wild rabbits

PTDC/CVT-CVT/29062/2017-PT2020 - Fundação para a Ciência e Tecnologia

PROJECT FIGHT 2

Development of an Edible Bait Vaccine to Control Rabbit Haemorrhagic Disease Virus 2 (RHDV2) in Wild Rabbits

Carvalho CL 1, Monteiro M1, Carvalho P1, Mendonça P1, Correia J2, São Brás B2, Peleteiro C2, Duarte E3, Mira A3, Branco S3, Roldão A4, Duarte MD1.2

¹Instituto Nacional de Investigação Agrária e Veterinária (INIAV I.P.), Av. da República, Quinta do Marquês 2780-157 Oeiras, Portugal ²Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterināria (FMV-UTL), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal ³Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Formação e Investigação Avançada (IIFA), Universidade de Évora, (UÉ) Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal ⁴Instituto de Biologia Experimental e Tecnológica (IBET), Avenida da República, Estação Agronómica, 2780-157 Oeiras, Portugal

Context of the study

RHDV2, a Calicivirus of the genus Lagovirus, causes rabbit haemorrhagic disease (RHD), an often-lethal systemic infection in the European rabbit (*Oryctolagus cuniculus*)^{1,2}. Since its emergence in 2010 in France², RHDV2 replaced the classical RHDV genogroups (G1-G6) that circulated previously^{1,3,4}. Currently, RHDV2 is one main factor underlying the wild rabbits' decline, which is a key-stone species in the Mediterranean ecosystems of the Iberian Peninsula. RHDV2 affects adult and juvenile animals, hampering the recruitment of new individuals to wild populations compromising their dynamics, indirectly impacting on several endangered predator species

RHD cannot be eradicated due to the high environment resistance of the virus and easy spread by insects, rodents, birds of prey or anthropogenic actions. Also, disease control is difficult despite in the industry vaccination, good management practices and biosecurity measures are effective6.

Commercial RHDV2 vaccines currently available are inactivated, obtained from infected animal liver extracts and the route of administration is usually subcutaneous, requiring handling of the animals. Further than the risks associated with **incomplete virus** inactivation and the inadvertent release of infectious virus in the field, these vaccines are not suitable for wild rabbits, requiring capture for inoculation which causes great stress. The immunity induced by these vaccines is short and, hence, the protection transient. The previous commercial RHDV vaccines, most also inactivated, were shown to be ineffective in conferring cross protection against RHDV26.

Main objectives

FIGHT-TWO (PTDC/CVT-CVT/29062/2017) strategic framework is the development and production of an edible and innocuous (pathogen- and genome-free) RHDV2 vaccine, based in Virus-Like Particles (VLPs), to be distributed in the field as bait or in dry feed. This oral vaccine overcomes the need of capture and manipulation of the animals, unfeasible in wild populations, and will potentially protect a broad proportion of the rabbit populations, crucial to abrogate virus transmission leading to the control the infection.

VP60 (major capsid protein) -VLPs are protein cages that mimic the overall structure of the native virions harbouring **no genetic material**⁷, although able to induce a protective immune response when administered parenterally⁸ or orally⁹. The **oral immunogenicity** of VP60 in rabbits has been described more than two decades ago⁹⁻¹³, however this strategy was never implemented due to cost/benefit ratios. Currently, VLP-based vaccine technologies have the potential of producing higher concentration of VLPs in a muchreduced time-frame. The VLP purification process required for rabbit immunization is expected to be simpler therefore **less expensive**^{14,15}. The recombinant VP60 based-VLPs RHDV2-vaccine, will be **updated** according to the virus evolution in an progressive **modular system**, as it is the case of Influenza vaccines¹⁶ [Figure 1].

The National Institute of Agrarian and Veterinarian Diseases (INIAV I.P.) that harbours the Nacional Reference Laboratory for Animal Diseases, and the Instituto de Biologia Experimental e Tecnológica (iBET), a private institute with vast experience in animal and human vaccine production, coordinated the project. The direct partnership includes two Portuguese Veterinary Universities - Universidade de Évora (UÉ) and Faculdade de Medicina Veterinária de Lisboa (FMV). Other institutions are considered indirect partners of the consortium. The project aims to mobilize several other layers of society including the hunting sector [Figure 2].

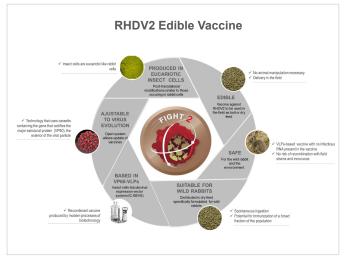
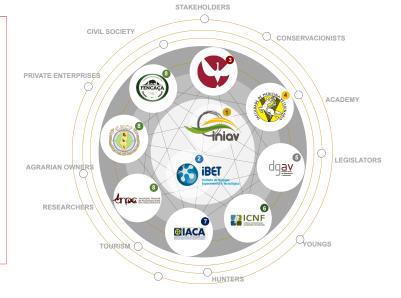



Figure 1. Characteristics of the VP60-VLPs based edible vaccine against RHDV2.

Direct Partners TITUTO DE BIOLOGIA EXPERIMENTAL E TECNOLÓGICA (IBET) periància no Deservolvimento de Vacinas Baseadas em YLPs

IVERSIDADE DE ÉVORA (UÉ)

INSTITUTO NACIONAL DE CONSERVAÇÃO DA NATUREZA (ICNF)
Nacional Authority for Nature's Conservation and Utilization of Hunting Resources

Indirect Partners

lated for the wild rabbit

Figure 2. Project Figth-two partnership.

Materials and Methods

The insect cells-baculovirus expression vector system (IC-BEVS) will be used to produce this novel vaccine.

Results and Conclusions

A nucleotide bank of RHDV2 vp60 sequences is being obtained to support the selection of a subset of representative strains to be included in the vaccine. The vp60 gene of those strains will be cloned and used to construct the recombinant baculoviruses.

FIGHT-TWO will allow to proceed with one of 12 measures specified in a National Action Plan for the Control of Rabbit Haemorrhagic Viral Disease in Rabbits (Dispatch 4757/17 of 31 May, Portuguese Ministry of Agriculture).

Project FIGHT-TWO supports other generalist management policies towards the recovery of wild rabbit populations and RHD control, the recovery of ecosystems where the rabbit is keystone and the reactivation of hunting activities in Portugal.

Funding: Project Fight-two (PTDC/CVT-CVT/29062/2017, PT2020), is financed by the Portuguese Foundation for Science and Technology (FCT).

Acknowledgments: Project +Coelho1: "Avaliação Ecossanitária das Populações Naturais de Coelho-Bravo Visando o Controlo da Doença Hemorrágica Viral" and Project +Coelho2: "Desenvolvimento e implementação de medidas práticas impulsionadoras da recuperação dos leporídeos silvestres em Portugal", financed by the Fundo Florestal Permanente (FFP), Portuguese Ministry of Agriculture.

References:

References:

**Le Gall-Reculé et al., 2013. Vet. Res. 44,

**Le Gall-Reculé et al., 2011. Vet. Rec. 168, 137–8.

**Lopes et al., 2015. Viruses 7, 27–36.

**Mahar et al., 2018. J Virol. 2018 Jan 2;92(2). pii: e01374-17

**Pelibes-Mateos et al., 2014. Emerg. Infect. Dis. 20, 2166-8.

**Carvalho et al., 2017. World Rabbit Sci. 25: 73-85.

**Carvalho et al., 2017. World Rabbit Sci. 25: 73-85.

Crisci et al., 2012. Vet Immunol Immunopathol. 148(3-4):211-25 ⁸Müller *et al.*, 2019. Arch Virol. 164(1):137-148. ⁹Plana-Duran *et al.*, 1996. Arch Virol. 141(8):1423-36

¹⁰Bárcena et al., 2000, J Virol, 74(3):1114-23

"Barcena et al., 2000. J Virol. 74(5):1114-25
"Torres et al., 2000. Vaccine, 19(2-3):174-82
"Martin-Alonso et al., 2003. Transgenic Res. 12(1):127-30
"Gil et al., 2006. Transgenic Res. 12(1):127-30
"Vicente et al., 2011. J Invertebr Pathol. 2011 Jul;107
Suppl:S42-8

¹⁵Peixoto et al., 2007. J Biotechnol. 10;127(3):452-61 6Sequeira et al., 2017. Vaccine. pii: S0264-410X(17)30246-3

